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SUMMARY

An adaptive least-squares finite element method is used to solve the compressible Euler equations in two
dimensions. Since the method is naturally diffusive, no explicit artificial viscosity is added to the
formulation. The inherent artificial viscosity, however, is usually large and hence does not allow sharp
resolution of discontinuities unless extremely fine grids are used. To remedy this, while retaining the
advantages of the least-squares method, a moving-node grid adaptation technique is used. The outstand-
ing feature of the adaptive method is its sensitivity to directional features like shock waves, leading to the
automatic construction of adapted grids where the element edge(s) are strongly aligned with such flow
phenomena. Using well-known transonic and supersonic test cases, it has been demonstrated that by
coupling the least-squares method with a robust adaptive method shocks can be captured with high
resolution despite using relatively coarse grids. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The efficient solution of the compressible Euler equations has been a focus of attention of
computational fluid dynamics (CFD) researchers for more than a decade. This is due to the
fact that in many problems of practical interest (especially high Reynolds number external
flows) the flow field away from the solid boundaries is essentially inviscid, and therefore can
be modeled by these equations. Moreover, it is a well-known fact among the CFD users that
developing a robust Euler flow solver is the preliminary step in building an efficient Navier–
Stokes solver.

So far, many different approaches have been adopted in developing numerical schemes to
solve the compressible Euler equations. Using the ideas of upwind schemes in the finite
difference method, Brooks and Hughes [6] introduced the Streamline Upwind Petrov–Galerkin
(SUPG) method, in which the weight function is modified by adding a perturbation to the
standard Galerkin test function. The added perturbation creates an upwind effect by weighting
the upstream nodes within the elements more heavily than the downstream nodes. Hughes and
Tezduyar [13] generalized the SUPG method to first-order hyperbolic systems. The shock
capturing ability of the method was later improved by adding non-linear operators to the
perturbation [5,14].
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Another approach was proposed by Baruzzi et al. [3], where the Laplacian of dependent
variables was added to the continuity and momentum equations. The amount of artificial
viscosity was then controlled by a single parameter as the coefficient of the Laplacians. They
later extended this first-order artificial viscosity method to second-order [4].

Löhner et al. [20] used a method based on writing the non-symmetric first-order differential
operators along characteristics to achieve a self-adjoint form, and then applied the Galerkin
method for the solution of a system of hyperbolic equations. Oden et al. [25] used the
Taylor–Galerkin method for the solution of the Euler equations in the supersonic regime,
along with the flux-corrected-transport approach to avoid non-physical oscillations in the
solution.

Another method is based on the least-squares weighted residual method. The method has
very good stability properties due to its minimization nature, and has been applied for the
solution of a variety of problems [17,19,29]. As one of the earliest efforts in this field, one can
mention the technique presented by Polk and Lynn [27] for the solution of unsteady gas
dynamic equations, with elements that are constructed in both space and time. Another
space–time finite element scheme was presented by Nguyen and Reynen [23], and was applied
to the solution of convection-dominated problems in one and two dimensions. They showed
that by extending the least-squares formulation to the time domain, highly accurate and stable
results can be obtained up to very large grid Peclet numbers.

Fletcher [11] used the least-squares method to solve the Euler equations for subcritical
compressible flows. The special feature of his method was to represent groups of variables
rather than single variables. Bruneau et al. [7] used a rather similar method to study the
vortical phenomena created by the subsonic and supersonic flow over a flat plate at different
angles of attack.

Application of the least-squares method to a governing equation of the general form:
L(f)= f leads to the favorable result of a symmetric and positive definite coefficient matrix,
if L is a first-order differential operator. If L is a higher-order operator, however, this
property is completely lost during the integration-by-parts, and moreover, elements with
higher-order continuity requirements, e.g. C1 must be employed. Lynn and Arya [21] proposed
to break down the higher-order system to its first-order counterpart as a way of eliminating
this disadvantage. This idea was used by Carey and Jiang [8] to formulate an algorithm for the
general system of first-order partial differential equations (PDEs) using the least-squares finite
element method. An analysis of the method for the wave equation was performed by Carey
and Jiang [9]. Jiang and Carey [16] also used the least-squares method for the solution of 2D
compressible Euler equations. Lefebvre et al. [19] applied a similar least-squares method for
the compressible Euler equations. They also adopted an adaptive refinement strategy based on
the least-squares residual as the error estimator, in a similar fashion to that proposed by Jiang
and Carey [15].

The least-squares finite element method is easy to implement, is naturally diffusive, contains
no free parameter(s), is stable thus allowing equal-order interpolation of all variables, and
more importantly, results in a symmetric and positive definite system of algebraic equations.
This latter property allows only half the matrix to be stored, thus reducing the memory
requirements by nearly 50%; a very desirable advantage, especially for large-scale problems
where storage limitations are a major concern. Also, the resulting system can be solved very
efficiently by the conjugate gradient (CG) iterative method. Application of other finite element
methods, such as the Galerkin [3] or the SUPG [6] lead to non-symmetric matrices, where the
efficient iterative methods used for their solution are variants of the optimal CG method,
attempting to imitate its properties [2]. Nevertheless, they are not as robust as the CG method
in terms of convergence and stability properties, storage requirements, and CPU time.
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The artificial viscosity produced by the least-squares method does not allow discontinuities
such as shock waves to be sharply resolved, unless an impractically fine grid is used. This is
one of the main reasons why very little work has been done so far in applying the least-squares
method to the Euler equations, despite its various and obvious advantages [16,19]. To alleviate
this problem to a very large extent, the least-squares method is combined with a directionally-
adaptive method, which uses an edge-based error estimate on quadrilateral grids. The error of
the numerical solution is estimated through its second derivatives and the resulting Hessian
tensor is used to define a Riemannian metric. An improved mesh movement strategy, based on
a spring analogy with no orthogonality constraints, is introduced to equidistribute the lengths
of the edges of the elements in the defined metric. This leads to a simple and efficient nodal
redistribution algorithm, offering a greater range of grid-point displacement.

The present work, therefore, is an attempt to investigate the least-squares finite element
method for compressible flows in the transonic and supersonic regimes with shocks, and
improve its performance and accuracy via an adaptive grid method, and a preconditioned CG
iterative solver.

2. LEAST-SQUARES FORMULATION

The Euler equations can be written as a first-order system in terms of primitive variables as
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where Q= (r, u, 6, p)T is the vector of primitive variables and r is the density, (u, 6) the
Cartesian velocity components and p the pressure. Here, At=I, where I denotes the identity
matrix and, Ax and Ay are the Jacobian matrices.

By discretizing the unsteady term using backward differences
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Defining the residual vector as R=LDQn+1+ f, the minimization of the least-squares
functional

I(Qn+1)=
1
2
&

V
RTR dV, (4)

yields the following weak form&
V

(LW)T(LDQn+1+ f)dV=0, (5)

where W is the weight function. Since the least-squares method is a minimization problem and
is therefore not subject to the LBB condition [17], equal-order interpolation can be used for all
variables. Introducing the finite element approximation
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Qn+1:Qh
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where ne is the number of nodes per element and Ni=NiI is the element shape function, and
substituting it into the weak form results in the linear algebraic equations

[K]{DQ}= −{R}, (7)

where DQ= (Dr, Du, D6, Dp)T is the global vector of unknowns. The global coefficient matrix
[K] and the right-hand-side vector {R} are obtained by summing up the element matrices and
vectors respectively

Kij
e =

&
Ve

(LNi)T(LNj)dV; ri
e=

&
Ve

(LNi)Tf dV. (8)

The integrals are evaluated using Gauss–Legendre quadrature.
The global coefficient matrix [K] has the important property of being symmetric and positive

definite. The implications are two-fold: first, only half of the matrix is calculated and stored,
resulting in savings in the calculation time and memory storage requirements; second, very
simple iterative solvers such as the classical CG algorithm, with preconditioning, can be used
for the solution of the linear system.

For the Euler equations (3), the numerical viscosity is inherent in the least-squares
formulation and is proportional to the time step as demonstrated in Reference [9].

2.1. Boundary conditions

For the Euler equations, the number of boundary conditions to be imposed on the domain
is determined by the theory of characteristics. In the finite element method, the numerical
boundary conditions are naturally imposed through the finite element shape functions, and
therefore no special treatments are required.

The flow-tangency boundary condition at solid boundaries can be imposed in one of two
ways:

1. Co-ordinate rotation. The velocity components at solid wall nodes are rotated from the
global co-ordinate system to the local co-ordinate frame, where the flow-tangency condi-
tion is easily imposed by setting the normal velocity component to zero ([28], Chapter 4).
Since, due to discrete representation of the computational domain, the angle at a typical
wall node A (Figure 1) can have two different values, it is necessary to assign a unique
angle for such nodes. To accomplish this, a length-weighted average of the angles from the
two adjacent wall edges can be used

Figure 1. Discontinuous angle at wall nodes.
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uA=
l1u2+ l2u1

l1+ l2
. (9)

The angles u1 and u2 are multiplied by l2 and l1 respectively, since the element with the
shorter edge will approximate 6� A better than the element with the longer edge.

2. Penalty method. The flow-tangency boundary condition at a solid wall can be imposed by
adding the penalty term [19]

Iw(Qn+1)=
a

2
&

Gw

(6� ·n� )2 dG, (10)

to the least-squares functional (4). Here, Gw, is the solid wall boundary, 6� is the velocity vector,
n� is the unit normal vector pointing outwards from the domain, and a is the penalty weight.

3. GRID ADAPTATION

The accuracy of the results obtained on a uniform grid can be significantly improved by
adapting the grid to the solution. This requires first to estimate the error of a given flow
variable on the coarse grid, and then the use of an adaptive strategy to equidistribute the error
over the entire domain.

The employed adaptive method is based on the work of Ait-Ali-Yahia et al. [1], and uses a
moving-node or r-method as the adaptive strategy. It is a very recent and important
development which significantly improves the grid efficiency compared with traditional
isotropic methods. It uses second derivatives of a given flow variable as the error estimator,
compared with first derivatives used by most other adaptive methods, hence providing a more
meaningful measure for the approximation error.

The sensitivity of the error estimator to directional flow phenomena, such as shock waves
and boundary layers, is achieved by calculating the error on the element edges rather than the
commonly used approaches based on nodes or on elements. When combined with the
moving-node scheme, it leads to a dramatic re-alignment of the element edges with such
directional structures. As a result, the shocks will be very thin and very sharply captured.

3.1. Edge-based error estimate

For the 1D element shown in Figure 2, where the scalar variable s is assumed to vary
linearly, the interpolation error can be estimated as the difference between a quadratic
interpolation ŝ and the actual linear one. Using linear and quadratic shape functions to
express s and ŝ respectively, it can be shown that the error E is

Figure 2. Approximation error in a 1D element.
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where j is the local element co-ordinate and he the element length. A measure of the overall
error in the element is then considered to be the root-mean-square value of Ee [26]
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If we define an optimal mesh as one for which the error is equidistributed over elements, the
following should hold for each element

he
2)d2ŝ

dx2

)
e

=C, (13)

where C is a positive constant. The second derivative in Equation (12) is based on ŝ, which is
linear, causing a problem. An approximation to this derivative is obtained by calculating the
second derivative of the numerical solution, i.e. d2s/dx2, by employing a recovery process
based on a weighted residual method [1].

The above methodology can be extended to a 2D element based on the fact that each edge
of a 2D element can be considered as a 1D element. The second derivative is now taken with
respect to a unit vector e

(2s

(e2 =eTHe, (14)

where H is the Hessian matrix of s which replaces the second derivative in equation (12)
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the second derivatives are calculated for all nodes throughout the domain. The Hessian matrix
can be decomposed into the form

H=RLRT, (16)

where L is the diagonal matrix of eigenvalues and R the matrix of eigenvectors. The matrix R
can be interpreted as a rotation with angle a which the eigenvector corresponding to the
smaller eigenvalue l1 makes with the x-axis. Since the error should be made positive, the
Hessian matrix is reconstructed by replacing L with �L� in (16)

H( =R �L�RT or H( =SST, (17)

with S=R
�L� considered a transformation stretching the element in the direction of the
principal axes of H( .

Once H( is calculated for all the nodes, with assumed linear variation throughout the domain,
the error (a scalar) on each edge is obtained from

e(l)=
& j2

j 1


rT(j)H( (j)r(j) dj, (18)
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where r(j) is the parametric representation of the edge l. This edge-based error estimate is
then used as input for the moving-node mechanism to reposition the nodes, and accordingly,
the elements.

It should be noted that although e(l) is a scalar, it represents the ‘directional’ error of the
edge.

3.2. Mo6ing-node strategy

To equidistribute the error over the entire domain, a moving-node method based on a spring
analogy is used. This method is applicable to both structured and unstructured grids, although
here it is used for structured grids. In this approach, the mesh is interpreted as a network of
springs, where each edge is considered to be a fictitious spring with its stiffness representing the
measure of the error (Figure 3). The equilibrium of forces in this network will then determine
the movement of each node. This idea was first introduced by Gnoffo [12]. Nakahashi and
Diewert [22] later complemented his work by incorporating a grid-orthogonality constraint,
and applied it in a finite differences context. In the finite element method, however, grid
orthogonality is not essential, and a simpler approach can be adopted.

In the spring network of Figure 3, the new position of point i is determined by minimizing
the potential energy of the system at that node

Pi=%
j

(xi−xj)2kij, (19)

where x is the position vector. The stiffness of the interconnected springs, kij, is defined as

kij=
e(l)

��xi−xj ��
=

e(xi ·xj)
��xi−xj ��

, (20)

in which · denotes the Euclidean norm. Minimizing (19) with respect to xi gives the following
equation

%
j

(xi
m+1−xj

m+1)kij
m+1=0, (21)

which expresses the equilibrium of forces in the local spring network at the present adaptive
iteration m+1. By lagging xj and kij in equation (21), the correction to the model can be
written as

Dxi=
%
j

(xj
m−xi

m)kij
m

%
j

k ij
m

. (22)

Figure 3. Local spring network corresponding to node i.
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The new position of xi is then calculated from

xi
m+1=xi

m+vDxi, (23)

where v is a relaxation parameter.
The iteration process (23) is applied to all nodes in the domain in order to adapt the mesh

to the solution. Boundary nodes can also move in the same way as internal nodes, but they are
then reprojected onto the boundary to maintain the geometric integrity of the domain. The
moving-node scheme is applied to grid points in a sweeping manner. The reason is to allow to
check the quality of each newly oriented element during the mesh movement, and thus avoid
formation of elements with a negative or nearly zero Jacobian. To obtain an appropriate
adapted mesh, the number of adaptive iterations per adaptive cycle is chosen to be in the range
200�400.

The adaptive method uses the solution of one of the scalar variables to adapt the mesh, and
then interpolates the solution on the new mesh. The adapted mesh and the interpolated results
are then used as initial data for the least-squares code to obtain a more accurate solution. Each
mesh adaptation followed by the least-squares solution is called one adaptive cycle.

4. SOLUTION METHOD

The resulting system of linear algebraic equations

Ax=b, (24)

is solved iteratively using the CG method. The coefficient matrix is symmetric and positive
definite, therefore making the CG method the most optimal choice.

To improve the convergence properties of the iterative solver, preconditioning is applied
using a diagonal (Jacobi) preconditioner. The elements of the preconditioner matrix M are
considered to be the L1-norm of the row elements of the coefficient matrix

mii= %
n

j=1

�aij �.

The effect of the Jacobi preconditioner is to make A more diagonally-dominant, which in turn
leads to a more uniform distribution of eigenvalues. This preconditioner is the simplest and the
cheapest since inverting a diagonal matrix is very straightforward, memory requirements are
limited to a vector of length n and its application only needs n multiplications.

For the CG method to have guaranteed convergence, the coefficient matrix should preserve
the symmetry and positive definite property after preconditioning. As a result, applying the
preconditioner matrix M from either left or right would be inappropriate, since M−1A and
AM−1 are not generally symmetric nor positive definite, even when both M and A are. The
remedy is to split M into two matrices

M=EET, (25)

and use split preconditioning

(E−1AE−T)(ETx)=E−1b, (26)

where E−1AE−T is symmetric and positive definite.
The convergence test used to halt the iterative process is
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rkBerelb+eabs, (27)

where rk is the L2-norm of residual: rk=b−Axk, and erel and eabs are relative and absolute
tolerances respectively.

5. NUMERICAL RESULTS

Four test cases are examined to study the ability of the least-squares method in capturing
shocks, and the robustness of the grid adaptation technique. The test cases are chosen to cover
the transonic and supersonic flow regimes. The flow variable used for grid adaptation in all
cases is the pressure.

5.1. Shock-reflection problem

The first test case is the reflection of a shock from a solid wall, as shown in Figure 4. The
domain is discretized uniformly with 60×20 bilinear rectangular elements. The boundary
conditions are

inlet Í
Ã

Ã

Á

Ä

r=1.0
u=2.9
6=0.0
p=0.7143

upper boundaryÍ
Ã

Ã

Á

Ä

r=1.7
u=2.6193
6=0.5063
p=1.5282

.

On the lower boundary, the no-penetration boundary condition is imposed, and the exit
boundary is left free. The values at the upper boundary are used as the initial guess.

The effect of the inherent viscosity, controlled by the time step, on the shock resolution is
shown in Figure 5, where the time step has changed from 0.05 to 0.1. As expected (Figure 6),
oscillations near the shock start growing after reducing the artificial viscosity, and the shocks
become more smeared by increasing it. Figure 7 shows the effect of preconditioning on the
convergence rate of the CG iterative solver. Here the relative and absolute tolerances are set
to erel=10−6 and eabs=10−14 respectively. It is clear from the figure that using the simple
Jacobi preconditioner has led to a two orders of magnitude drop in the solver residual, and
consequently, in about a 30% reduction in the number of iterations.

In an attempt to reduce the solution time, the same test case was run using erel=10−2 and
eabs=10−7 (one order of magnitude less than the global tolerance). The converged solution
was found to be identical to the solution before reducing tolerances up to the fourth decimal
point, indicating the accuracy of the results. This, however, led to about a 50% reduction in the
overall CPU time, which is quite significant.

Figure 4. Reflection of a shock from a solid wall: description of the problem.
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Using the reduced tolerances and Dt=0.1, the results are adapted through five cycles. The
artificial viscosity is reduced beginning at the third cycle by reducing the time step to 0.05. The
initial level of artificial viscosity was high for the size of the grid near the shock, and it must
be reduced for better shock resolution. Figure 8 shows the pressure contours and the grids
after each adaptation. The improvements in the shock resolution after adaptation is quite
evident in Figure 9.

5.2. Supersonic channel flow

The second test case is that of supersonic flow over a 4% circular arc bump placed in a
channel. The height of the channel and its length, ahead and after the bump, are equal to the
chord length. The boundary conditions at inlet are:

r=1.0, u=1.65, 6=0.0, p=0.7143.

Figure 5. Pressure contours for different time steps; from top to bottom: Dt=0.05, 0.1, 0.15.

Figure 6. Pressure distribution for different time steps at y=0.5, showing smearing and oscillations on non-adapted
mesh.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1121–1139 (1999)
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Figure 7. Convergence history of the iterative solver with Jacobi preconditioner at 30th global iteration, Dt=0.1,
shock-reflection problem.

Figure 8. Evolution of the grid and solution during adaptation (pressure contours).

On walls the flow tangency boundary condition is imposed, and the exit boundary is left free.
The grid consists of 64×16 uniformly distributed bilinear rectangular elements, with 16
elements in the y-direction, 22 elements on the bump, and 21 elements on each side of it.

The pressure contours for Dt=0.1 are shown in Figure 10. The leading- and trailing-edge
shocks, as well as the interaction of the trailing-edge shock with the reflected shock, are
qualitatively well-captured, although they are rather smeared. The results are obtained using
Jacobi preconditioned CG method with the tolerances set to: erel=10−2 and eabs=10−7.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1121–1139 (1999)
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Figure 9. Pressure distribution at y=0.5 before and after adaptation.

Figure 10. Pressure contours for supersonic channel flow on non-adapted grid, Dt=0.1.

The adapted grids and solutions after five cycles of adaptation are shown in Figure 11,
where the artificial viscosity is reduced after the second cycle. All the shocks, especially the
strongest leading-edge shock, are quite sharply captured. Figure 12 shows the improvement in
shocks resolution, where the leading-edge shock is quite sharp, and the trailing-edge and the
reflected shock profiles are close to vertical. Magnification of the grid near the leading-edge
(Figure 13) shows how the elements are re-oriented to be aligned with the shock, creating very
high aspect ratio elements.

The final adapted solution is compared with the published results of Eidelman et al. [10] and
Jiang et al. [18] in Figure 14. Since these authors have not used an adaptive method, the shock
is more smeared in their results. Overall, the adapted least-squares method shows good
agreement except for the oscillations at the leading- and trailing-edges, which are due to the
use of a non-conservative formulation.

5.3. Transonic channel flow

The third test case is the transonic flow in a channel with a 10% circular arc bump. The grid
consists of bilinear rectangular elements, with 32 elements uniformly distributed on the bump,
and 16 elements on each side of it, centrally clustered with respect to the bump. The height of
the channel is divided into 16 elements which are clustered toward the bottom wall, with the
minimum element size on the wall equal to 0.03125. The Mach number at inlet is M�=0.675,

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1121–1139 (1999)
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Figure 11. Evolution of the grid and solution during adaptation (pressure contours).

Figure 12. Pressure distribution at y=0.2 before and after adaptation.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1121–1139 (1999)
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Figure 13. Magnification of the grid in the leading-edge shock region.

Figure 14. Mach number distribution on the lower and upper walls; comparison with the published data.
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which is large enough to create a supersonic pocket on the bump followed by a shock. The
inlet and exit boundary conditions are:

inlet: r=1.0, u=0.675, 6=0.0; exit: p=1.5282.

On the lower and upper walls, the no-penetration boundary condition is imposed.
The initial solution and adapted results are shown in Figure 15. The time step, which is

initially set to 0.3, is reduced to 0.1 at the final adaptive cycle. Figure 16 demonstrates the
change in the Mach number distribution on the walls before and after adaptation.

Figure 15. Original and adapted solutions and grids.

Figure 16. Mach number distribution on the lower and upper walls before and after adaptation; transonic channel
flow.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1121–1139 (1999)
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Figure 17. Mach number distribution on the lower and upper wall; comparison with the published data.

The adapted results are compared with those of Ni [24] and Eidelman et al. [10] in Figure
17. The position of the shock is approximately at 72% of the chord, and the maximum Mach
number is 1.323, both in very good agreement with these results. The deviation is, however, in
the Mach number distribution after the shock. Figure 18 shows the Mach contours for the
final adapted case. It is seen that there is a viscous effect near the lower wall (limited to the
first row of the elements) similar to a boundary layer. This viscous layer has little effect on the
solution before the shock. After the shock, however, the flow becomes rotational near the wall
and hence adversely affects this layer, leading to underestimation of the Mach number.

Figure 19 shows that using larger Dt, i.e. more artificial viscosity, worsens the situation both
ahead and after the shock. This is more evident from Figure 16, where the Mach number
profile behind the bump is elevated after reducing Dt in the second adaptive cycle. The figure
also shows that as the shock becomes stronger, thus generating more vorticity, the tail branch
of the Mach number profile is reduced.

Figure 18. Iso-mach lines for the second adapted solution, Dt=0.1.

Figure 19. Iso-mach lines for the second adapted solution, Dt=0.3.
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5.4. Supersonic flow o6er a blunt body

As the last test case, the supersonic flow over a blunt body is examined. This is to show that
both attached and detached shock waves can be clearly captured by the least-squares method.

The grid for this case is shown in Figure 20(a), which consists of 32×52 uniformly
distributed bilinear rectangular elements. The flow conditions at inlet are

r=1.0, u=3.0, 6=0.0, p=0.7143.

Flow tangency conditions are imposed on the walls and no boundary conditions are specified
at the supersonic exit.

The initial and adapted grids and solutions are shown in Figure 20. The initial solution is
perfectly symmetric about the centerline. The detached shock is very strong at the nose and
becomes weaker further downstream. After three cycles of adaptation, the thick shock of the
initial solution is converted to a very sharp shock, as shown in Figure 20(d). This is more
clearly evident in Figure 21, which shows the effect of adaptation on the shock along the
centerline.

For the initial and the first two adapted solutions, a constant time step of Dt=0.02 was
used. For the third adaptation, the artificial viscosity was reduced by decreasing Dt to 0.01. As
a result, the shock was much sharper and with very little dissipation.

Figure 20. Initial and adapted solutions and grids (pressure contours).
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Figure 21. Pressure distribution at centerline before and after adaptation.

6. CONCLUSIONS

The least-squares finite element method is combined with a robust grid adaptation technique
to solve the Euler equations for three supersonic and one transonic test problems. The quality
of the numerical results indicate the remarkable performance of the adaptive method, and
demonstrate its superiority to many existing techniques. This is quite evident from the final
adapted grids, especially for the shock-reflection and supersonic channel problems, where the
elements are strongly aligned with the shocks.

The presence of oscillations after the leading- and trailing-edge shocks in the supersonic
channel case, and the slightly misplaced shock position in the shock-reflection problem is
anticipated to be due to using a primitive-variable formulation. As a result, using the
least-squares method with conservative variables is recommended.

Overall, the combination of the least-squares method with the directionally-adaptive method
has produced promising results, despite using an artificial viscosity mechanism without any
free parameters and relatively coarse grids.
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